• <acronym id="sfycb"></acronym>

  • <td id="sfycb"><ruby id="sfycb"></ruby></td>

      热门搜索:电力测温监测设备、智能电网监测设备、输配电设备
      服务热线:0319-4648099
      您的位置:首页 > 新闻资讯 > 常见问题
      常见问题
      “十二五” 期间智能电网年均增长8%
      浏览次数:    2018-06-07

      国家电网公司智能电网部副主任沈江在11月12日北京召开的“展望十二五”为主题的“第七届中国电气工业发展高峰论坛”上表示,今年年底全国发电装机容量将达到9.79亿千瓦,增长非常迅速。到2015年,全国总装机容量将达到14.36亿千瓦,“十二五”期间年均增长8%。

      未来五年智能电网将得到扶持

      沈江表示,“十二五”时期,全国发电装机容量在结构上将发生变化,首先,我国煤电比例将下降,从70%下降到64%,风电、水电及核电等清洁能源的比例将得到很大提高。

      沈江说,“十二五”时期,水电重点要开发金沙江、大渡河等水电基地。核电将在沿海地区得到快速发展。风电方面,今后十年将建设7个千万级的发电基地,相当于建立7个三峡,主要分布在新疆、甘肃、内蒙以及江苏等地。

      沈江强调,“十二五”期间,智能电网发展将得到扶持,主要包括以下几个方面:一是发电环节,主要解决新能源接入问题、标准问题,还有大容量的储能研究和应用。二是输电环节,主要是输变电的监测,而变电环节的关键是智能变电站的建设,将新建七万以上电压等级的变电站超过5100座,变电站智能化改造要1000座。三是配电环节,要建立配网的智能化、一体化。

      智能电网促进上下游产业发展

      谈到智能电网发展对上游产业促进问题时,沈江表示,发电侧方面,对风力发电最有利,其次是太阳能;电网侧方面,电力电子设备制造发展空间最大,电路电容器、变压器、开关设备等反倒不是获利最大的上游行业,不过,智能电网对传统的电工产品技术促进是最大的;在用户侧产业,有电动汽车、分布式电力发电、太阳能制造等。此外,对于信息通讯产业,最能促进电子元器件的生产,以及先进储能设备制造。

      中国科学院电工研究所所长肖立业在论坛上也表示,传统电器设备进行智能化的升级改造大有潜力,如果电气制造企业仍然是走传统的道路,将来会被国际大公司远远抛在后面。

      常用UPS电源电池的应用常识
      浏览次数:    2018-06-07

      一、UPS常用电池的种类

      在UPS电源应用中常用的电池共有三种:包括开放型液体铅酸电池,免维护电池,镍铬电池,影响电池寿命的因素,不同种类电池也有各自的优点和缺点。现UPS厂家所配的电池一般为免维护电池,下面以免维护电池为主介绍三种电池的特点:

      1:开放型液体铅酸电池

      此类电池按结构可分为8-10年,15-20年寿命两种。由于此电池硫酸电解会产生腐蚀性气体,此类电池必须安装在通风并远离精密电子设备的房间,且电池房应铺设防腐蚀瓷砖。

      由于蒸发的原因,开放电池需定期测量比重,加酸加水。此电池可忍受高温高压和深放电。电池房应禁烟并用开放型电池架。

      此电池充电后不能运输,因而必须在现场安装后充电初充电一般需55-90小时。正常每节电压为2V,初充电电压为2.6-2.7v。

      2:免维护电池

      又名阀控式密封铅酸蓄电池,在使用和维护中需遵循下列原则:

      a:密封电池可允许的运行范围为15度-50度,但5度-35度之内使用可延长电池寿命。在零下15度以下电池化学成分将发生变化而不能充电。在20度到25度范围内使用将获得最高寿命.电池在低温运行将获得长寿命但较低容量,在高温运行将获得较高容量但短寿命。

      b:电池寿命和温度的关系可参考如下规则,温度超过摄氏25度后,每高8.3度电池寿命将减一半。

      c:免维护电池的设计浮充电压为2.3V/节。12V的电池为13.8V。CSB公司建议每节2.25-2.3V。在120节电池串联的情况下,温度高于摄氏25度后,温度每升高一度浮充电压应下调3MV。同样温度每升高一度为避免充电不足电压应上调3MV。放电终止电压在满负荷(<30分钟)情况下为1.67V每节。在低放电率情况下(小电流长时间放电)要升高至1.7V-1.8V每节,APCSYMMETRA可根据负载量调节充电电压。

      d:放电结束后电池若在72小时内没有再次充电。硫酸盐将附着在极板上绝缘充电,而损坏电池。

      e:电池在浮充或均充时,电池内部产生的气体在负极板电解成水,从而保持电池的容量且不必外加水。但电池极板的腐蚀将减低电池容量。

      f:电池隔板寿命在环境温度为30-40度时仅为5-6个月。长时间存放的电池每6个月必须充电一次。电池必须存放在干燥凉爽的环境。在20度的环境下免维护电池的自放电率为3-4%每个月,并随温度变化。

      g:免维护电池都配有安全阀,当电池内部气压升高到一定程度时安全阀可自动排除过剩气体,在内部气压恢复时安全阀会自动恢复。

      h:电池的周期寿命(充放电次数寿命)取决于放电率,放电深度,和恢复性充电的方式,其中最重要的因素是放电深度。在放电率和时间一定时,放电深度越浅,电池周期寿命越长。免维护电池在25度100%深放电情况下周期寿命约为200次。

      i:电池在到达寿命时表现为容量衰减,内部短路,外壳变形,极板腐蚀,开路电压降低。

      j:IEEE定义电池寿命结束为容量不足标称容量AH的80%。标称容量和实际后备时间非线性关系,容量减低20%相应后备时间会减低很多。一些UPS厂家定义电池的寿命终止为容量降至标称容量的50-60%。

      k:绝对禁止不同容量和不同厂家的电池混用,否则会降低电池寿命。

      l:若两组电池并联使用,应保证电池连线,汇流排阻抗相同。

      m:免维护电池意味着可以不用加液,但定期检查外壳有无裂缝,电解液有无渗漏等仍为必要的。

      3:镍铬电池

      此类电池不同于铅酸电池,电解时产生氢和氧而不产生腐蚀性气体,因而可安装在电子设备的旁边。且水的消耗很少,一般不需维护。正常寿命为20-25年。远比前面提到的电池昂贵。初始安装的费用约为铅酸电池的三倍。并不会因环境温度高而影响电池寿命,也不会因环境温度低而影响电池容量。一般每节电压为1.2V,UPS因应用此类电池需设计较高的充电器电压。

      二、优点和缺点:

      1开放型铅酸电池:

      优点:投资较少,寿命较免维护电池长,对温度要求较低。

      缺点:维护较复杂,需专门的电池间,有腐蚀性气体排出,必须现场初充电50-90小时,需专人维护。

      2:免维护电池:

      优点:不需加液等维护,可在满充状态下运输,不需专人维护。

      缺点:不及时恢复性充电会损害电池,对温度较敏感,寿命较短,比铅酸电池贵。

      3:镍铬电池:

      优点:维护要求较低,寿命较长,对温度不敏感,无有害气体排放。

      缺点:三种电池中最贵。

      三、UPS常用电池

      现计算机中心一般多数选用免维护电池,维护较方便,但也需进行下列工作:

      1:每三到四个月要放电一次,以防极板氧化。
      2:环境温度要保持在20-25度。
      3:连接不能过紧和过松,需经常检查。
      4:使用三年后需及时检查更换。(end) 
       

      电流互感器误差的数字补偿法研究
      浏览次数:    2018-06-06

      1、引言

      在电力系统各级电网中,电流互感器被广泛应用于电能计量、电流测量及继电保护等场合。电流互感器的测量精度不仅会影响电能计量和电流测量的准确性,还会影响继电保护装置的性能。因此,如何降低电流互感器的误差从而提高其测量精度,受到了电力工作者的广泛关注。 电流互感器的误差本质上是由励磁电流造成 的,所以只能采取措施减小励磁电流,才能减小误 差,但不可能通过消除励磁电流而消除误差。为了提高电流互感器的精度,采用零磁通电流互感器的方案,并且取得了很好的效果。由于零磁通电流互感器的励磁电流极小(接近于零),因而具有很高的精度。

      另一方面,为了克服电流互感器的固有误差,采用外部有源补偿的方法,也取得了满意的效果, 使互感器的测量误差大大减小,测量精度大大提高。因此,这两种方法已经成为提高电流互感器精 度的主要手段。但是,这两种方法都需要利用电子电路对电流互感器进行外部动态调整或补偿,因 此,结构复杂、调试不便、实现困难 ,限制了它们在电力用电流互感器方面的应用。随着计算机应用技术和数字电力技术的发展,数字仪表、数字保护及虚拟仪器技术已在电力系统 二次回路中得到了越来越多的应用。由于数字仪表及数字保护多采用单片计算机或数字信号处理器,在数字仪表和数字保护等二次设备中完全可以用软件的方法对电流互感器的误差进行补偿。在本文中研究了对电流互感器误差进行补偿的软件方法,即电流互感器误差的数字补偿法。

      2、电流互感器的误差分析

      2.1 影响电流互感器误差的因素

      电流互感器的等值电路,其中尺 、分别为一次绕组的电阻和漏电抗,尺、为二次绕组的电阻和漏电抗(折算到一次侧),尺 为负载 电阻(折算到一次侧), 为折算到一次侧的励磁电 抗,J 为一次电流,J 为二次电流(折算到一次侧), L则为折算到一次侧的励磁电流。由图 1可见,由于 励磁电流J 的存在,使J 与J 数据不等,产生比误 差;同时J 超前J ,使J 和J 不同相,产生角误差。 根据图 1可求得励磁电流J 为:J :盟 (1) ,A 对于选定的电流互感器,尺 和 为常数。由 于电流互感器铁心磁化曲线具有非线性特征,因而励磁电抗 会随二次电流, 和负载电阻 R 变化。二次电流, 增大即一次电流, 增大时,或者负 载电阻R 增大时,互感器铁心饱和度增加,导致励 磁电抗 降低。由式(1)可知,励磁电流 的大小 与二次电流 和负载电阻R 有关。二次电流J2或 负载电阻R 增大,会引起励磁电流L的增大,从而 导致电流互感器误差的增加。因此,电流互感器的 误差仅受二次电流J2和负载电阻 R。的影响。当负载 电阻R.为定值时,电流互感器的误差仅与二次电流 相关,而且呈现正相关性。 但是,如果二次电流, 过小(相应地,被测电流也很小),则电流互感器工作在磁化曲线的起始段,这时,电流互感器的励磁电抗 比电流互感器 工作在磁化曲线线性段时的励磁电抗要小,励磁电 流L就较大,因而电流互感器的误差也较大。因此,二次电流较小时,电流互感器的误差不再与二次电流,成正相关性。

      2.2 电流互感器的误差特性

      2.2.1 电流互感器的误差

      电流互感器的误差包括比误差和角误差。由于 励磁电流的存在,电流互感器的实际电流比与其额 定电流比不相等,这样在测量电流时造成数值误 差。以相对值表示数值误差即为比误差,其定义为:r r = ×100 (2) I 式中 砌 ——电流互感器的比误差 n ——电流互感器的额定变比 励磁电流的存在还会引起一次电流与二次电 流不同相,从而在测量电流时产生相位误差即角误 差。角误差是指一次电流和二次电流的相位差,记 为 6。通常,二次电流超前一次电流。

      2.2.2 比差曲线与角差曲线

      对于选定的电流互感器,其误差仅受二次电流 和负载电阻的影响。负载电阻为定值时,比误差随 二次电流变化的曲线称为比差曲线;角误差随二次电流变化的曲线称为角差曲线。

      3、电流互感器误差的数字补偿原理

      传统的二次仪表以的测量值,由于J 和之间既有数值误差,又有相位误差,必然造成相应的测量误差。要提高测量精度,只能选用有 较高准确度等级的电流互感器。但对于数字仪表或 虚拟仪器,借助其强大的数据处理功能,用软件方法 可以很好地补偿电流互感器误差所引起的测量误 差,这相当于提高了电流互感器的准确度等级。 由式(2)可得(3)如果事先知道或事先测得电流互感器的比误差,可按式(3)将计算结果作为的测量值,即可补偿电流互感器的比误差所引起的测量误差。如果事先知道或事先测得电流互感器的角误差 6,可采用短数据窗移相算法对电流互感器的角误差引起的测量误差进行补偿。具体方法如下: 首先,按式(4)和式(5)计算出系数口和 b: (4)4 J . 1r “ 6= (5) .2r 式中电流互感器的角误差Ⅳ——数字仪表在一个工频周期内的采样点数 然后,用移相算法对 即 进行移相。如果二次电流超前一次电流(通常如此),则按式(6)进行 滞后移相。反之,则按式(7)进行超前移相。 筋(n)=ai2(n)一bi2(n+1) (6) 筋(n)=a/ (n)一bi (n—1) (7) 式中n——表示采样时刻的离散时间,n=l,2…, N (n)——电流互感器二次电流采样值序列筋(n)——滞后移相后的二次电流采样值序列经移相运算后,二次电流的相位后移或前移6 角,从而与一次电流保持同相位,进而消除了电流互感器的角误差所引起的测量误差。

      4、电流互感器误差的数字补偿方法

      由于数字仪表使用单片微型计算机(MCU)或 数字信号处理器(DSP),而虚拟仪器使用功能更为 强大的微型计算机,因此,借助其较强的数据处理 功能,使用软件方法可方便地实现电流互感器误差 的数字补偿。 对于选定的电流互感器,若要进行数字补偿, 应在设备投入运行之前事先做好以下准备工作:

      (1)确定电流互感器的负载电阻的阻值。

      (2)测出该阻值下的比差和角差曲线。

      (1)根据二次电流采样值序列:(n)按一定的算法计算出二次电流有效值厶。

      (5)按式(6)或式(7)进行滞后或超前移相运算,得到移相后的二次电流采样值序列筋(n)。

      (6)确定一次电流相量的相位,得到补偿后的相位值。数字补偿法看似复杂,但实际上,通过计算机辅 助分析和辅助设计手段,使电流互感器误差的数字 补偿法简单有效、方便易行。数字仪表或虚拟仪器等数字设备进行电流测量 时,不仅电流互感器会出现测量误差,数字测量装置 本身的采样通道也会引起测量误差,且两种误差的 大小有可比性。因此,仅仅提高电流互感器的精度或 仅对电流互感器的误差进行数字补偿是不够的。要提高电流的测量精度,还必须对采样通道引起的测量误差进行补偿。电流互感器误差的数字补偿就是采用软件方法 实现对电流互感器误差的补偿,采样通道引起的测量误差也能够进行数字补偿。所以,对两种误差进行综合数字补偿是可行的。由于电流互感器误差的数字补偿可以综合考虑采样通道的误差补偿,因而比 传统的电流互感器误差补偿方法更方便。

      5、结束语

      借助于数字仪表或虚拟仪器的强大数据处理功能,完全能够使用软件方法实现电流互感器误差的数字补偿。一方面,数字补偿法可以补偿电流互感器的测量误差,这相当于提高了电流互感器的准确度等级。另一方面,在测量精度一定的情况下,采用数字补偿法可在很大程度上降低对电流互感器准确度等级的要求。此外,电流互感器误差的数字补偿可以综合考虑采样通道的误差补偿,从而提高电流的测量精度。

      继电保护的性能和检修措施
      浏览次数:    2018-06-06

      近年来,随着计算机技术和通信技术的发展,电力系统继电保护在原理上和技术上都有了很大的变化。可靠性研究是继电保护及自动化装置的重要因素,由于电力系统的容量越来越庞大,供电范围越来越广,系统结构日趋复杂,继电保护动作的可靠性就显得尤为重要,对继电保护可靠性的研究与探讨就很有必要。鉴于继电保护的重要性,对其定期进行预防性试验是完全必要的,决不能只是在出现不正确动作后再去分析和修复。因此对继电保护检修策略及措施也很重要。本文就这方面的问题,结合本人多年的工作经验进行探讨。

      1、影晌继电保护可靠性的因素
      继电保护装置是一种自动装置,在电力系统中担负着保证电力系统安全可靠运行的重要任务,当系统出现异常情况时,继电保护装置会向值班人员发出信号,提醒值班人员及时采取措施、排除故障,使系统恢复正常运行。继电保护装置在投入运行后,便进入了工作状态,按照给定的整定值正确的执行保护功能,时刻监视供电系统运行状态的变化,出现故障时正确动作,把故障切除。当供电系统正常运行时,保护装置不动作。这就有 “正确动作”和“正确不动作两种完好状态,说明保护装置是可靠的。 如果保护装置在被保护设备处于正常运行而发生“误动” 或被保护设备发生故障时,保护装置却 “拒动或无选择性动作,则为“不正确动作”。就电力系统而言,保护装置 “误动或无选择性动作”并不可怕,可以由自动重合闸来进行纠正,可怕的是保护装置的 “拒动”,造成的大面积影响,可能导致电力系统解列而崩溃。而导致继电保护工作不正常的原因可能有以下几种。
      (1)继电保护装置的制造厂家在生产过程中没有严格进行质量管理、把好质量关。
      (2)继电保护装置在运行过程中受周围环境影响大。由于其周围空气中存在大量的粉尘和有害气体,同时又受到高温的影响,将加速继电保护装置的老化,导致性能改变。有害气体也会腐蚀电路板和接插座,造成继电器点被氧化,引起接触不良,失去保护功能。
      (3)晶体管保护装置易受干扰源的影响,如电弧、闪电电路、短路故障等诸多因素,导致发生误动或拒动。
      (4)保护可靠性在很大程度上还依赖于运行维护检修人员的安全意识、技能和责任心。继电保护的可靠性与调试人员有密切关系,如技术水平低、经验少、责任心不强发现和处理存在问题的能力差等。
      (5)互感器质量差,在长期的运行中,工作特性发生变化,影响保护装置的工作效果。
      (6)保护方案采用的方式和上下级保护不合理,选型不当。

      2、提高继电保护可靠性的措施
      贯穿于继电保护的设计、选型、制造、运行维护、整定计算和整定调试的全过程,而继电保护系统的可靠性主要决定于继电保护装置的可靠性和设计的合理性。其中继电保护装置的可靠性又起关键性作用。由 于保护装置投入运行后,会受到多种因素的影响,不可能绝对可靠,但只要制定出各种防范事故方案,采取相应的有效预防措施,消除隐患,弥补不足,其可靠性是能够实现的。提高继电保护可靠性的措施应注意以下几点:
      (1)保护装置在制造过程中要把好质量关,提高装置整体质量水平,选用故障率低、寿命长的元器件,不让不合格的劣质元件混进其中。同时在设备选型时要尽可能的选择质量好,售后服务好的厂家。
      (2)晶体管保护装置设计中应考虑安装在与高压室隔离的房内,免遭高压大电流、断路故障以及切合闸操作电弧的影响。同时要防止环境对晶体管造成的污染,有条件的情况下要装设空调。电磁型、机电型继电器外壳与底座间要加胶垫密封,防止灰尘和有害气体侵入。
      (3)继电保护专业技术人员在整定计算中要增强责任心。计算时要从整个网络通盘考虑,认真分析,使各级保护整定值准确,上下级保护整定值匹配合理。
      (4)加强对保护装置的运行维护与故障处理能力并进行定期检验,制定出反事故措施,提高保护装置的可靠性。
      (5)从保证电力系统动态稳定性方面考虑,要求继电保护系统具备快速切除故障的能力。为此重要的输电线路或设备的主保护采用多重化设施,需要有两套主保护并列运行。
      (6)为了使保护装置在发生故障时有选择性动作,避免无选择性动作,在保护装置设计、整定计算方面应考虑周全、元器件配合合理、才能提高保护装置动作的可靠性。

      3、新形势下继电保护检修策略及措施
      鉴于继电保护的重要性,对其定期进行预防性试验是完全必要的,决不能只是在出现不正确动作后再去分析和修复。继电保护定期检修的根本目的应是 “确保整个继电保护系统处在完好状态,能够保证动作的安全性和可靠性”。因此,原则上定检项目应与新安装项目有明显区别,只进行少量针对性试验即可。应将注意力集中在对保护动作的安全性和可靠性有重大影响的项目上,避免为检修而检修,以获取保护定期检验投资效益的最大回报。建议以下几点:
      (1)尽快研究新形势下的新问题,制定新的检修策略修订有关规程 (对大量出现的非个别现象,不宜由运行单位自行批准),指导当前乃至今后一个时期的继电保护检验工作,积极开展二次设备的状态检修,为继电保护人员 “松绑”,使检修对系统安全和继电保护可用性的影响降到最低。
      (2)在检修策略的制定上应结合微机保护的自检和通信能力,致力于提高保护系统的可靠性和安全性,简化装置检修,注重二次回路的检验。
      (3)今后,在设计上应简化二次回路;运行上加强维护和基础管理,注重积累运行数据,尤其应注意对装置故障信息的统计、分析和处理,使检修建立在科学的统计数据的基础上;在基本建设上加强电网建设和继电保护的更新改造,注重设备选型,以提高继电保护系统的整体水平,为实行新策略创造条件。
      (4)大力开展二次线的在线监测,研究不停电检修整个继电保护系统的技术。
      (5)着手研究随着变电站综合自动化工作的进展,保护装置分散布置、集中处理、设备间联系网络化、光纤化继电保护运行和故障信息网建成后的保护定检工作发展方向。
      (6)厂家应进一步提高微机保护的自检能力和装置故障信息的输出能力,研制适应远方检测保护装置要求的新型保护。

      4、结语
      本文讨论了供电系统中的继电保护装置的可靠性问题,提出了探讨继电保护可靠性的必要性、影响继电保护可靠性的因素及提高继电保护可靠性的对策。其可靠性问题不仅与设计、制造、运行维护和检修调试
      等有密切关系而且继电保护装置维护人员也将起到关键性作用。最后本文讨论了保护检验的目的、建议尽快修订有关规程,研究制定新形势下的继电保护检修策略。

      电力系统过电压知识
      浏览次数:    2018-01-05

      电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。

      大气过电压:由直击雷或雷电感应突然加到电力系统中,使电气设备所承受的电压远远超过其额定值。大气过电压可以分为直击雷过电压和感应雷过电压。电力系统遭受大气过电压后,可使输配电线路及电气设备的绝缘发生击穿或闪络,造成停电以致危害人的生命安全。特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。防止大气过电压,通常采取装设避雷针、避雷线、避雷器,合理提高线路绝缘水平,采用自动重合闸装置等措施。

      工频过电压:系统中在操作或接地故障时发生的频率等于工频(50 Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。产生工频过电压的主要原因是:空载长线路的电容效应,不对称接地引起的正序、负序和零序电压分量作用,系统突然甩负荷使发电机加速旋转等。限制工频过电压应针对具体情况采取专门的措施,常用的方法有:采用并联电抗器补偿空载长线的电容效应,选择合理的系统中性点运行方式,对发电机进行快速电压调整控制等等。

      操作过电压:由于操作(如断路器的合闸和分闸)、故障或其他原因,使系统参数突然变化,系统由一种状态转换为另一种状态,在此过渡过程中系统本身的电磁能振荡而产生的过电压。 ,特点是具有随机性,但最不利情况下过电压倍数较高。操作过电压原因及规避措施

      1 电网的操作过电压一般由下列原因引起

      A.线路合闸和重合闸; B.空载变压器和并联电抗器分闸; C.线路非对称故障分闸和振荡解列; D.空载线路分闸。 线路合闸和重合闸过电压对电网设备绝缘配合有重要影响,应采用有合闸电阻的断路器对该过电压加以限制。避雷器可作为变电所电气设备操作过电压的后备保护装置,该避雷器同时是变电所的雷电过电压的保护装置。 设计时对A、C 类过电压,应结合电网条件加以预测。

      2 线路合闸和重合闸操作过电压

      空载线路合闸时,由于线路电感-容的振荡将产生合闸过电压。线路重合时,由于电源电势较高以及线路上残余电荷的存在,加剧了这一电磁振荡过程,使过电压进一步提高。因此断路器应安装合闸电阻,以有效地降低合闸及重合闸过电压。 应按电网预测条件,求出空载线路合闸、单相重合闸和成功、非成功的三相重合闸(如运行中使用时)的过电压分布,求出包括线路受端的相对地及相间统计操作过电压。预测这类操作过电压的条件如下: A.空载线路合闸,线路断路器合闸前,电源母线电压为电网最高电压; B.成功的三相重合闸前,线路受端曾发生单相接地故障;非成功的三相重合闸时,线路受端有单相接地故障。 空载线路合闸、单相重合闸和成功的三相重合闸(如运行中使用时),在线路受端产生的相对地统计操作过电压,不应大于2 2UXG 。

      3 分断空载变压器和并联电抗器的操作过电压

      由于断路器分断这些设备的感性电流时强制熄弧所产生的操作过电压,应根据断路器结构、回路参数、变压器(并联电抗器)的接线和特性等因素确定。该操作过电压一般可用安装在断路器与变压器(并联电抗器)之间的避雷器予以限制。对变压器,避雷器可安装在低压侧或高压侧,但如高低压电网中性点接地方式不同时,低压侧宜采用磁吹阀型避雷器。当避雷器可能频繁动作时,宜采用有高值分闸电阻的断路器。

      4 线路非对称故障分闸和振荡解列操作过电压

      电网送受端联系薄弱,如线路非对称故障导致分闸,或在电网振荡状态下解列,将产生线路非对称故障分闸或振荡解列过电压。 预测线路非对称故障分闸过电压,可选择线路受端存在单相接地故障的条件,分闸时线路送受端电势功角差应按实际情况选取。 有分闸电阻的断路器,可降低线路非对称故障分闸及振荡解列过电压。当不具备这一条件时,应采用安装于线路上的避雷器加以限制。

      5 对于空载线路分闸过电压

      应采用在电源对地电压为1.3UXG 条件下分闸时不重燃的断路器加以防止。

      6 变电所应安装避雷器

      以防止操作过电压损坏电气设备。安装位置如下: A.出线断路器线路侧的每一线路入口侧,称安装于该位置的避雷器为线路避雷器; B.出线断路器变电所侧,称安装于该位置的避雷器为变电所避雷器。 所有避雷器具体安装位置和数量尚应结合4.4.2 确定。 注:线路入口处无并联电抗器时,如预测(对断路器合闸需考虑合闸电阻一相失灵条件)

      该处过电压不超过避雷器操作过电压保护水平时,可不必在该处安装避雷器。

      7 具有串联间隙避雷器的额定电压

      应不低于安装点的电网工频过电压水平。

      8 应用金属氧化物避雷器限制操作过电压时

      应参照厂家产品使用说明书,使其长期运行电压值、工频过电压、谐振过电压允许持续时间符合电网要求。

      9 避雷器的操作过电压通流容量

      允许吸收能量应符合电网要求(对断路器合闸需考虑合闸电阻一相失灵的条件)。 此外,还应校核避雷器上的电压是否超过其规定保护水平。当超过时,应考虑其对绝缘配合的影响。

      10 为监测运行电网的工频过电压

      谐振过电压和操作过电压,宜在变电所安装过电压波形或幅值的自动记录装置,并妥为收集实测结果。

      限制操作过电压的措施有;选用灭弧能力强的高压开关;提高开关动作的同期性;开关断口加装并联电阻;采用性能良好的避雷器,如氧化锌避雷器;使电网的中性点直接接地运行。

      谐振过电压:电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。谐振过电压分为以下几种:

      (1) 线性谐振过电压 谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。

      (2) 铁磁谐振过电压 谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。

      (3) 参数谐振过电压 由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd ~ Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。

      限制谐振过电压的主要措施有:

      (1) 提高开关动作的同期性 由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。

      (2) 在并联高压电抗器中性点加装小电抗,用这个措施可以阻断非全相运行时工频电压传递及串联谐振。 (3) 破坏发电机产生自励磁的条件,防止参数谐振过电压

      变频器的基础问题解答
      浏览次数:    2018-01-05

      1、什麽是变频器?

      变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

      2、PWM和PAM的不同点是什麽?

      PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。PAM是英文Pulse Amplitude Modulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。

      3、电压型与电流型有什麽不同?

      变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。

      4、为什麽变频器的电压与电流成比例的改变?

      非同步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那麽磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用於风机、泵类节能型变频器。

      5、电动机使用工频电源驱动时,电压下降则电流增加;对於变频器驱动,如果频率下降时电压也下降,那麽电流是否增加?

      频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。

      6、采用变频器运转时,电机的起动电流、起动转矩怎样?

      采用变频器运转,随著电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对於带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。

      7、V/f模式是什麽意思?

      频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。

      8、按比例地改V和f时,电机的转矩如何变化?

      频率下降时完全成比例地降低电压,那麽由於交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。

      9、在说明书上写著变速范围60~6Hz,即10:1,那麽在6Hz以下就没有输出功率吗?

      在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz.

      10、对於一般电机的组合是在60Hz以上也要求转矩一定,是否可以?

      通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择。

      11、所谓开环是什麽意思?

      给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈。

      12、实际转速对於给定速度有偏差时如何办?

      开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对於要求调速精度比较高,即使负载变动也要求在近於给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。

      13、如果用带有PG的电机,进行反馈後速度精度能提高吗?

      具有PG反馈功能的变频器,精度有提高。但速度精度的植取决於PG本身的精度和变频器输出频率的解析度。14、失速防止功能是什麽意思?

      如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。

      15、 有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什麽意义?

      加减速可以分别给定的机种,对於短时间加速、缓慢减速场合,或者对於小型机床需要严格给定生产节拍时间的场合是适宜的,但对於风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。

      16、 什麽是再生制动?

      电动机在运转中如果降低指令频率,则电动机变为非同步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。

      电网干扰浅析
      浏览次数:    2018-01-05

      在公共电网上存在着各形式的干扰。除了供电中断可以明显察觉外,绝大多数干扰都是不容易察觉的。然而,正是这种不易察觉的干扰对正常运行的电器电子设备存在着严重的威胁。如:雷电在电网上感应的干扰可使瞬间电压高达二万伏以上,将电网上的用电设备烧毁。

      高次谐波在零线上的干扰会严重影响高频通讯设备的工作,使数字电路误操作,从而导致通讯中断,系统数据丢失等的严重后果。

      习惯上将电网干扰分为下述几种:

      一、低频干扰。

      A.过压:电压持续高于额定值的10%以上。
      B.欠压:电压持续低于额定值的15%以下。
      C.断电:大于300ms的供电中断。
      D.间断:小于300ms供电中断。
      E.浪涌:电压高于额定值的10%以上,持续时间1至数个周期。
      F.频率漂移:频率偏移正常值的±2%。

      二、高频干扰。

      A.尖峰:高于额定电压若干倍,有时可高达数千伏,持续时间为毫秒级的短时过压。
      B.毛刺:高于额定电压若干倍,有时可高达上万伏,持续时间为微秒级的瞬时过压。
      C.高次谐波:由于负载的非线性引起的电网波形的畸变。
      D.低频干扰产生的主要原因为:大型电器的开、关机;电网负荷变化过大(超载或轻载);负载短路等。

      高频干扰产生的主要原因为:

      由电网供电的非线性负载;高频工作方式的设备产生的辐射;雷电;电器设备开关机的瞬间等。如何消除形形色色的干扰对用电设备造成的影响,为用电设备提供高可靠性,高质量的纯净的电源,当前普遍的做法是:

      A.使UPS具有稳压、稳频功能,排除了电压过高、过低及频率漂移的影响。
      B.UPS自带电池组,解决了电网故障及停电的问题。
      C.使用谐波滤波器,有效地滤除高次谐波。
      D.使用射频干扰(RFI)滤波器,消除射频干扰。
      E.采用良好的屏蔽措施。

      (1)EVADA UPS采用了先进的DSP控制技术双重隔离的在线工作方式使其具有十分优良的稳压稳频抗干扰性能,IGBT整流器的输入电压范围可宽达±25%(一般UPS为±15%),在此范围内输出电压均稳定在额定值。从而彻底解决了输入电压过高或过低的问题。

      电气倒闸操作常见问题分析
      浏览次数:    2018-01-05

      无论是机组启停,还是机组正常运行,以及事故情况下,电气倒闸操作做为日常工作较为重要的一个环节,它的正确性、安全性将关系到人身、设备的安全,机组及电网的安全、稳定运行。由于国产200MW机组全能值班员的实行,加之人员的优化组合,原从事电气专业值班员减少,有经验的人员不多。在电气专业面,人员的技术水平、技术素质跟不上当前形势的需要,电气专业面人力更显匮乏。虽实行全能值班员,但跨专业学习的局限性,倒闸操作在执行中还存在很大差距。特别是非电气专业人员在进行电气倒闸操作时操作极不规范,大多数人根本没有掌握电气倒闸操作知识。因此很有必要对电气倒闸操作加以论述。

      1、电气倒闸操作释义及其原则

      电气设备有三种状态,即运行、备用(冷备用、热备用、联动备用)、检修状态;将电气设备由一种状态转变为另一种状态,就叫倒闸,所进行的操作,称之为倒闸操作。

      倒闸操作的原则:

      中心原则:不能带负荷拉合刀闸

      1.1在拉合闸时,必须用开关接通和断开负荷电流及短路电流,绝对禁止用刀闸切断负荷电流;

      1.2在合闸时,应先从电源侧进行,检查开关确在断开位置后,先合上母线侧刀闸,后合上负荷侧刀闸,再合上开关。因为在线路合闸送电时,有可能开关在合闸位置未查出;若先合线路侧刀闸,后合母线侧刀闸,则带负荷合刀闸时,在刀闸触头间产生强烈电弧,会损坏设备,甚至引起母线短路,从而影响其它设备安全运行。若先合母线侧刀闸,后合线路测刀闸,虽是同样带负荷合刀闸,但由于母线开关继电保护动作,使它自动跳闸,隔离故障点,不致影响其它设备的安全运行;同时线路侧刀闸检修较简单,且只需停一条线路,而检修母线侧刀闸时,必须停用母线,影响面大。

      1.3在拉闸时,应先从负荷侧进行,拉开开关,检查开关确在断开位置后,然后再拉开负荷侧刀闸,最后拉开电源测刀闸。对于两侧具有开关的变压器而言,在停电时,应先从负荷侧进行,先断开负荷侧开关切断负荷电流,后断开电源侧开关,只切断变压器的空载电流。因为,若开关在合闸位置未检查出来,则造成带负荷拉刀闸,则使故障发生在线路上,因线路继电保护动作使开关自动跳闸,隔离故障点,不至于影响其它设备的安全运行。若先拉开电源侧刀闸,后拉负荷侧刀闸,虽同样是带负荷拉刀闸,则故障发生在母线上,扩大了故障范围,影响了其它设备安全运行,甚至影响机组的稳定性。

      1.4在倒母线时,刀闸的拉合步骤是先逐一合上需要转换至一组母线的刀闸,然后逐一拉开在另一母线上运行的刀闸,这样能够避免因合一把刀闸,拉一把刀闸而造成的误操作事故;但有时也根据具体情况而定。

      1.5允许用刀闸拉合的设备如下:

      1.5.1拉合母线上无故障的避雷器和电压互感器;

      1.5.2在母联开关已合闸时,倒换系统运行方式;

      1.5.3在正常情况下倒换主变中性点运行方式;

      1.5.4用带消弧罩的刀闸,当刀闸与操作把手之间有隔板时,允许拉切30安培以下的负荷电流(380V系统);

      1.5.5母线上负荷刀闸均断开的情况下,给没有故障的母线充电和切电。

      1.6禁止用刀闸进行下列操作:

      1.6.1带负荷拉倒闸;

      1.6.2用刀闸给线路停送电;

      1.6.3投入、切除主变及所有厂用变压器;

      1.6.4切断故障点的接地电流。

      2、电气倒闸操作的基本要求

      2.1操作刀闸的基本要求:

      2.1.1手动合刀闸时,必须迅速果断,但在合闸终了不得用力过猛以防合过头及损坏支持瓷瓶。注意:在合闸开始时,若发生弧光,则应将刀闸迅速合上。

      2.1.2手动拉刀闸时,应缓慢而谨慎,特别是刀闸动触头刚离开静触头时,若发生电弧应立即合上,停止操作。但在拉切小容量变压器,一定长度架空线路和电缆线的充电电流,少量的负荷电流,以及用刀闸解环操作,均有电弧产生,此时应迅速将刀闸拉开,以便过零点灭弧。

      2.1.3误拉合刀闸以后,严禁将此刀闸合上或拉开,必须将该回路开关断开,并确证刀闸无电流通过后,才允许将误拉合的刀闸合上或拉开。

      2.1.4在拉合刀闸之前,必须检查开关在“断开”位置。

      2.1.5当刀闸操作不动时,应仔细查找原因,不得强行操作,以防将刀闸损坏。

      2.1.6刀闸送电,停电操作要在相应开关(接触器)断开的情况下进行;刀闸操作完毕后,应检查动静触头接触良好,核实刀闸位置正确后,将配电柜门锁好。

      2.1.7刀闸操作前,如果发现异常或缺陷,应停止操作,采取必要措施或消除缺陷后方可重新操作不得蛮干。

      2.1.8刀闸拉不开、合不上时严禁强拉强合,应仔细查找原因:操作机构是否完好,回路中是否有接地刀闸,开关是否在分闸位置等,确实无法处理时,通知检修处理。刀闸在操作过程中发生卡涩,不能强行操作,可手摇刀闸操作把手几次,然后再合;若仍卡涩,未发生触头放电现象,立即停止操作,若已发生放电现象,且不能熄灭,应将此刀闸设法与带电系统脱开。

      2.2开关操作基本要求

      2.2.1在一般情况下,开关不允许纯手动合闸。

      2.2.2遥控开关时不得用力过猛。以免损坏带灯按钮,也不得返回太快,以防开关合闸后又跳闸。

      2.2.3开关操作后应检查有关信号及测量仪表的指示,以判断开关位置的正确性。但不能仅从信号灯及测量仪表的指示来判断开关的实际断合位置,还应到现场检查开关机械位置指示器。

      2.2.4开关运行中不允许运行人员进行慢分闸或慢合闸,小车开关在运行中不允许互换使用,紧急情况下经总工批准方可更换,少油开关的油色、油位应正常。

      2.3熔断器在使用中的基本要求:

      2.3.1应正确选择熔体,保证其工作的选择性;

      2.3.2熔断器内所装熔体的额定电流,只能小于或等于熔断器的额定电流;

      2.3.3熔体熔断后应更换相同尺寸和材料的熔体,不能随意增大或减小,更不能用不易熔断的其他金属丝去更换,以免造成事故;

      2.3.4安装熔体时不宜碰伤熔体本身,否则,可能在正常工作电流通过时熔断,造成不必要的停电;

      2.3.5熔断器的两端应接触良好;

      2.3.6更换熔体时,要切断电源或负荷,不能在带负荷的情况下拔出熔断器,更换时,工作人员应戴绝缘手套,穿绝缘鞋。

      2.3.7在更换保险操作时,首先应测试保险芯是否完好;

      装保险过程中发现保险座、卡簧等有异常情况应及时汇报值长,联系检修人员处理;

      2.3.8送电时发现保险盖破裂、金属螺纹有损伤、卡簧严重变形、与底座接触过紧、过松、保险盖与金属螺纹脱落等情况时应及时更换保险盖;

      2.3.9送电时发现底座瓷套松动时应首先将其旋紧,并检查底座引线接头接触良好,无松动,底座固定牢*;

      2.3.10送电前应将保险盖与保险芯擦试干净,并检查底座内无杂物,金属导电部分完好。

      3、电气倒闸操作常见问题分析及采取措施

      3.1取、装熔断器、调整、更换碳刷、装、拆接地线、使用钳型电流表测量电流时不戴绝缘手套。

      《安规》中明确规定了在合断熔断器和装、拆接地线、用钳型电流表测量电流时必须戴绝缘手套,但有些运行人员不按此要求执行,徒手进行操作。在使用保险把手断、合保险时,由于部分保险座的弹簧较紧,操作中用力不均匀极易造成手向两侧偏移而触及带电部分。拆接地线时,如果突然来电,都会造成人身触电。使用钳型电流表测量回路电流时,由于周围均为带电设备,容易造成人身触电。

      更换碳刷时身体裸露部分触及设备外壳或另一极时易造成接地或短路,威胁人身或设备安全。

      发电机出口PT二次保险更换、电压测量时,由于与高压带电部分距离较小,威胁安全。

      为保证人身安全,在进行专用屏保险操作中、装、拆接地线、使用钳型电流表测量回路电流时,工作服袖口扣紧并戴绝缘手套且必须带一双,工作服袖子必须装进手套内,在进行刀熔式保险装、取和发电机、励磁机碳刷调整更换时必须戴劳保线手套,且工作服袖口必须扣紧,所使用的线手套必须干燥、不得有油污和严重脏污,如不符合要求时应及时清洗或更换,不得戴不合格的手套进行工作。做发电机出口PT二次保险更换、电压测量工作时,也应戴绝缘手套。

      3.2小车开关的带负荷切拉、送电检查不到位

      发生带负荷切拉、送电所造成的后果是惨重的,轻则设备损坏,重则危及人身安全。为此,部门对小车开关送电前的检查做了测绝缘的要求,但具体执行不好。在送电前应充分作好准备工作,认真核对设备的名称和编号、红、绿翻牌位置正确,开关在“检修”位置时,要用摇表或万用表电阻档测开关上、下触头间、上、下触头相间和上、下触头与开关外壳间电阻。若电阻为零,则证明开关在合闸位置或开关相间短路或接地,必须先打跳开关或排除故障,测绝缘正常后,再进行操作。

      切电时,除了核对设备的名称和编号外,还要检查开关的信号灯、开关的位置指示、电流表指示是否到零、即电度表是否已停转、联锁开关断开、红、绿翻牌位置正确,拉出开关前必须对开关进行就地打跳。

      3.3小车开关的带负荷切拉、送电不按正确的操作顺序进行

      小车开关不论切电、送电都必须严格按照操作票要求顺序,并严格按照:唱票、复诵、模拟、操作四个步骤进行,不得漏项、跳项操作,更不能先操作,再补填操作票和危险点分析预控卡。

      3.4送电前不到就地检查设备

      送电前除要检查送电设备确处于备用状态和测量送电设备绝缘合格外,还必须检查设备的实际情况。了解送电设备就地实际情况,是否符合送电条件、检查检修是否有遗留影响设备运行的工器具或杂物、设备安全接地是否恢复正常、辅助系统是否符合运行条件、检修自己所做的安全措施是否全部拆除、控制箱是否符合运行条件等均应进行详细检查,任何一条不符合《规程》和《安规》要求,都不能盲目送电。

      3.5断、合接地刀闸和装、拆接地线项目操作票中填写不规范

      断、合接地刀闸和装、拆接地线的安全措施填写操作票时,应包括:(1)核对设备的名称、编号;(2)检查是否具备断、合接地刀闸和装、拆接地线的条件(开关已拉开、刀闸已拉开、确以与带电部分隔离、检修工作已全部结束、工作票已终结等);(3)验电、放电;(4)断、合接地刀闸和装、拆接地线;几个步骤进行。

      3.6停电设备不进行验电或验电不完全

      《安规》要求在停电设备进、出线两侧各相分别验电。与停电设备有关的变压器、互感器,必须从各侧、各相分别验电,防止向停电设备反送电。

      3.7测绝缘不检查摇表、不切电、不退联锁或不验电

      定期测绝缘工作中,存在不取操作、合闸保险的情况和不验电的情况,如果误合开关(接触器)或联锁回路启动使开关(接触器)合闸,会造成人身触电。测绝缘前不验电,如果走错间隔或联络回路反送电,同样,会造成人身触电。

      6KV负荷定期测绝缘时,如果小车开关在“试验”位置,不取操作、合闸保险,一旦开关在“试验”位置合闸,不能及时发现,将开关向“工作”位置送时,检查不到位不能及时发现问题,会造成带负荷合闸送电,所以切电时,必须按操作票要求严格执行。

      3.8装设接地线和合接地刀闸不验电或验电与装设接地线和合接地刀闸间隔太长

      装设接地线、合地刀前不进行验电,如果回路有电、突然来电或走错间隔装设接地线或合接地刀闸,会引起电弧烧伤、保护动作造成失电。停电母线或设备在停电验明无电后,如果需要装设接地线或合地刀,应立即进行,不得再进行其他工作,如果由于其他原因不能及时装设接地线或合地刀,在其他工作结束后,再装设接地线或合地刀前,必须重新验明无电后,进行装设接地线或合地刀的操作。否则,一旦停电设备突然来电,会引起电弧烧伤、保护动作造成失电的严重后果。

      3.9设备送电前不检查保护压板投、退情况;

      《规程》、《安规》明确规定,电气设备不允许无保护运行。送电前,必须对送电设备保护进行检查,防止保护漏投或误投,对于锅炉大联锁回路压板也应按要求及时正确投入。电机启动、母线、变压器充电、发电机升压、并网时保护的正确投入尤其重要,因为在这几个阶段是设备非正常运行阶段,容易出现问题,一旦存在故障,保护漏投或误投,保护不能及时动作,造成设备损坏的严重后果。

      3.10验电笔金属裸露部分过长;

      各岗位均配了低压验电笔,由于其金属裸露部分过长,部门要求个人对其进行绝缘处理,使金属裸露部分不得超过2-3毫米,防止验

      电中发生短路或接地,但部分人员未进行处理或绝缘有破损,未及时完善。

      4、电气倒闸操作的执行步序及注意事项

      4.7重大操作,应避免在交接班时间中进行,如工作需要进行操作时,操作中间不得进行交接班,待全面操作完毕,或一段结束后,并确认操作无误后,方可进行交接班。

      4.8雷电时禁止进行倒闸操作,如遇事故处理,远方控制的开关允许操作;用绝缘棒拉合隔离开关(刀闸)或经传动机构拉合隔离开关(刀闸)和断路器(开关),均应戴绝缘手套。雨天操作室外高压设备时,绝缘棒应有防雨罩,还应穿绝缘靴。接地网不符合要求时,晴天也应穿绝缘靴。

      结束语:

      上述对电气倒闸操作的原则、基本要求、操作中常见问题、操作步序进行阐诉。通过阐诉我们应清楚认识到要保证电气倒闸操作的安全,就必须严格认真执行各项规章制度,加强安全知识的学习,并认真总结经验,吸取教训,努力提高自身技术水平,掌握倒闸操作技能;还必须端正工作态度,以务实的精神投入到倒闸操作中。也只有这样,安全才能得以保障。

      1   共 8 条记录, 10 条 / 每页, 共 1 页
      网站首页关于我们产品中心新闻资讯成功案例售后服务诚聘英才联系我们

      冀公网安备 13052702000168号

      被老男人强奷很舒服好爽好爽

    1. <acronym id="sfycb"></acronym>

    2. <td id="sfycb"><ruby id="sfycb"></ruby></td>